Framing Camera Sensitivities

November 2016

POC: Joe Holder, Robin Benedetti

Framing Camera with CCD Status Update, NOV 2016

Available GXD Framing Cameras at NIF

CCD	Camera	# strips	DIM	Add'l INFO	Gain Rel ²	Pulse Vel (mm/ns)	Gate width (ps)@(bias V)	Actual Interstrip Timing
	RGXD1F	4	00-00		31	150	104 (150V)	
	RGXD2T	2	90-78 & 90-315	ERASER ¹	.4	131	110(100V) 106(150V)	0/97 0/206 0/252
	GXD3F &RGXD3F	4	90-78		5	142	115 (50V) 90 (300V)	
	RGXD4F-20 0	4	<i>0-0</i> & 90-78	200 ps electrical	11	137	100 (100V)	
	RGXD4F -600 extended integration	4	<i>0-0</i> & 90-78	600 ps electrical	176 (16x of -200 config)	139	228 (100V)	

RGXD4 - Door Added to allow Pulse Forming modules to be changed in field in R configuration

1 Early Radiation Artifact Suppression Electrode Rig, see slide 4

2 Relative gains are extrapolated to 100V and compared to HGXD1 strip2 the framing of with average CCD counts/ CCD pixel compared to PDS film exposure counts / scan pixels

J.P. Holder, L. R. Benedetti & the framing camera team

Current HGXDs

	Camera ³	# Strips	DIM	Add'l INFO	Gain Rel ²	Pulse Vel (mm/ns)	Gate width (ps)@(bias V)	Actual Interstrip Timing
F I L	HGXD1T	2	0-0& 90-78	ERASER ¹ reduced phosphor ⁴ 1800V	0.8*	154	106 (50V) 95 (150V)	
	HGXD2F ^c	4	90-78	ERASER; New head & PFM design; phosphor at 1800V setting	2	132	~92(50V)/ ~82(200V)	0/250/514/743@ 200V
	HGXD3T [∞]	2	TBD	ERASER Run w/ phosphor at 1800V setting	~0.8	137	~105(50V) 94(150V)	0/248
	HGXD6Fb	4	90-78	ERASER; New head & PFM design; phosphor at 1800V setting	2	135	~80(50V)/ ~72(250V)	

 a) HGXD3T pulser replaced (March2015), Head(MCP/Phosphor) and PFMs nominally the same. Timing expected to change (next use unscheduled, expect ± 200 ps certainty). Similar sensitivity to previous build expected.

- b) HGXD6F is four strip framing camera first used in April using new taper transformer drive head design
- c) HGXD2F was rebuilt Aug 2015 to be like HGXD6, new MCP, new timings and sensitivity
- 1 Early Radiation Artifact Suppression Electrode Rig, see slide 4
- 2 Relative gains/sensitivity are extrapolated to 100V and compared to HGXD1T strip2 with 2300V phosphor setting
- 3 All HGXDs are "R" or "vertical" orientation for film recovery
- *Strip 1 on HGXD1T 20-30% less sensitive than Strip2(check flat field for specific delays/bias)
- 4. Engineering decision, Aug2015, to reduce phosphor pulser charge voltage to 1800V on all HGXDs (~7kV to imager) HGXD4 and HGXD5 for pulsers currently being rebuilt

Relative Gain & Saturation Values

Average Relative saturation(%) measured on Flat field Shots

Camera	Rel. Saturation Factor (@100V)	Expected saturation value
rGXD 1F	31	10000
GXD 3F	5	10000
HGXD1T" Reduced phosphor	Rescale 0.8	rescale ~6000-75 00

- 1 on the graph means : 1 percent saturated per TW when MCP is 1280 mm from TCC
- I extrapolated saturation values to 100V using 3x/50 Volts as the gain factor
- Dashes are 3x/50V guidelines
- GXD1 may have changed (reduced) sensitivity sometime in 2012
- Saturation levels are uncertain

NIF 5

Framing Camera Operational Issues

- GXDs: strip 1 must be first
 - Bias voltage minimum = 60V (no alarms)
 - Bias voltages can be set in increments of 10 V
 - prefer users use 60,100,150,200, 250V etc to "lump" calibration and FF efforts
 - Maximum interstrip delay = 50 ns, in units of 25 ps
- HGXDs
 - Strip 1 is not required to be first
 - Need to verify/calculate timing requests with TDOs/RSs
 - most NIF software does not account for strip1 delay
 - Bias voltage minimum = 50V
 - Bias voltages can be set in increments of 50V
 - Maximum interstrip delay = 10.4 ns, in units of 25 ps (10400 ps)
- HGXD1 has higher gain on strip 2 due to cross talk (gain variation reduced after 1/2015 reclamp)
- HGXD2F rebuilt head after October2015 has relatively slow strips fed by tapered transformers
 - Do not operate with interstrip timing < 250 ps
 - Observed delays with 0/250/500/750 settings 0/250/514/743@ 200V
 - Strip length on film \sim 35mm/(0.132 mm/ps) = \sim 265 ps
- HGXD6F has relatively slow strips fed by tapered transformers
 - showed strong cross talk effects in calibration at 0/200/400/600 set
 - observed (1/3.8/3.2/2.4 x) with measured delays 0/189/402/590
 - Do not operate with interstrip timing < 250 ps

ERASER mitigates the effect of early x-rays

ERASER Early Radiation Artifact Suppression Electrode Rig

ERASER suppresses artifacts by attracting electrons before the camera is triggered. High-voltage surface installed ~1cm above framing camera active area (microstrips) Changes E-field to attract electrons that arrive before amplifying voltage

ERASER Schematic

HGXI1 without **ERASER**

HGXD2F with **ERASER**

NIF₇

Estimates at best 20% (normalization), for ~8keV x-rays Strip to Strip, Droop and dependence on Timing and bias details

NIF Performance Review - Limited Distribution

N160829-002

Looking to "average correction" produced by FF correction (looking at check graphs produced by Shahab) I Get that HGXD2 (sequential) is 0.825 of HGXD6F (Con A timing) on average... but looks like strip to strip varations with particular timing larger